Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity

نویسندگان

  • Gianluca Baldanzi
  • Valentina Bettio
  • Valeria Malacarne
  • Andrea Graziani
چکیده

Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diacylglycerol kinases.

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol to form phosphatidic acid. In most cases, members of this large family of enzymes appear to bind and regulate proteins activated by either diacylglycerol or phosphatidic acid. Proteins that appear to be regulated, in part, by DGKs include protein kinase Cs, RasGRPs, and phosphatidylinositol kinases. By modulating the activity of these p...

متن کامل

Activation of human neutrophil NADPH oxidase by phosphatidic acid or diacylglycerol in a cell-free system. Activity of diacylglycerol is dependent on its conversion to phosphatidic acid.

The superoxide-generating neutrophil NADPH oxidase can be activated in cell-free reconstitution systems by several agonists, most notably arachidonic acid and the detergent sodium dodecyl sulfate. In this study, we show that both phosphatidic acids and diacylglycerols can serve separately as potent, physiologic activators of NADPH oxidase in a cell-free system. Stimulation of superoxide generat...

متن کامل

Quantitative Analysis of Cellular Diacylglycerol Content.

Diacylglycerol (DAG) is a bioactive lipid with diverse biological roles. DAG transiently accumulates in a membrane upon receipt of an appropriate stimulus that activates phospholipase C to cleave phospholipids. The resulting hydrolysis product DAG binds to proteins such as protein kinase C to initiate a variety of downstream cellular processes. DAG kinases attenuate such responses by converting...

متن کامل

Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development

Diacylglycerol kinases (DGKs) are a diverse family of enzymes that catalyze the conversion of diacylglycerol (DAG), a crucial second messenger of receptor-mediated signaling, to phosphatidic acid (PA). Both DAG and PA are bioactive molecules that regulate a wide set of intracellular signaling proteins involved in innate and adaptive immunity. Clear evidence points to a critical role for DGKs in...

متن کامل

Interactions between the PDZ domains of Bazooka (Par-3) and phosphatidic acid: in vitro characterization and role in epithelial development

Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016